
Abstract-For restoration of grasp in disabled people by means of
functional electrical stimulation of peripheral nerves, 18polar
Hybrid Cuff Electrodes were developed. These electrodes consisted
of a micromachined polyimide-based thin-film structure with
integrated electrode contacts and interconnection lines which was
glued to a silicone cuff. Interconnection lines were made of only
300 nm of sputtered gold, which led to high line drops. Gold
electroplating was used to thicken the lines to 3 µm, which reduced
the mean track resistance from 480 Ω to 10 Ω. Furthermore, the
electrode material was changed from sputtered platinum to
electroplated platinum black in order to decrease the phase border
impedance of stimulation sites. Applying these techniques, the
overall electrode impedance could be reduced from 7.78 kΩ to
624 Ω (at 1 kHz). Additional to the electrical optimization of the
cuff electrodes, mechanical properties were enhanced by changing
the method of joining silicone and polyimide from using one part
silicone adhesive to plasma activation of surfaces: Plasma-treated
surfaces were simply pressed face to face. The result was
a bondage without any additional layer of glue, which led to a very
high mechanical flexibility and higher yield of the overall Hybrid
Cuff Electrode.

Keywords - FES, cuff electrode, electroplating, gold, platinum,
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I. INTRODUCTION

Cuff-type electrodes are probably the most commonly used
neural interfaces for restoration of lost neuro-muscular
functions by means of functional electrical stimulation (FES),
at least since the early 70ies. Veraart et al. showed that a single
cuff electrode having multiple stimulation contacts installed on
a peripheral nerve allowed selective activation of different
muscles [1]. In order to gain high selectivity, a high number of
stimulation contacts was assumed to be mandatory. Applying
traditional fabrication methods, based on stimulation contacts
made of platinum foils embedded in a silicone cuff [2], the
integration density of contacts (and cables) was limited by the
skill of the manufacturer. Stieglitz et al. introduced a fabri-
cation method for cuff-type electrodes based on micromachined
polyimide thin-film substrates, that offer a very high possible
integration-density of electrode contacts [3]. Because of
mechanical properties and also cost-effectiveness, these thin-
film cuffs are restricted to small diameters, up to 3 mm. Hybrid
Cuff Electrodes, consisting of a micromachined, scaffold-like
polyimide-substrate glued to a silicone cuff appeared to be
a good combination of advantages of both technologies:
traditional silicone and micromachining [4]. This technology
also proved to be suitable for the realization of smart neural
electrodes, integrating a some intelligence by electronics,

e.g. multiplexer circuits [5]. A drawback of the micromachined
substrates was the high electrical resistance of thin (300 nm)
and narrow (down to 10 µm) gold interconnection lines, that
was found to be in the range several 100 Ω, depending on the
length and width of the tracks. Even worse was the influence of
the phase-border impedance of dot-shaped electrode contacts
(Ø=500 µm) to the overall power loss during stimulation: using
sputtered platinum, an impedance magnitude of several kilo-
ohms at 1 kiloherz was measured in saline solution. Among the
electrical efficiency, also the mechanical properties could be
improved. Using silicone adhesive to join silicone sheets and
polyimide caused a stiffening of the overall device, that was
hard to predict in its extend. This affected the reproducibility of
the fabricated Hybrid Cuff Electrodes.

The here presented study is about reducing the electrical
losses of a Hybrid Cuff Electrode by thickening integrated
interconnection lines using gold electroplating and by changing
the electrode material and deposition process. In order to
overcome the mechanical problems related to gluing, a new
method for joining silicone to silicone and silicone to polyimide
was investigated.

II. METHODOLOGY

To optimize the properties of the Hybrid Cuff Electrode,
two different approaches were investigated, independently
described in subchapters A (electrical) and B (mechanical).

A. Reduction of Electrical Losses

Electrical losses were caused by ohmic resistance of thin-
film tracks and complex impedance of electrode phase-border.
The only way to decrease the resistance of a track with a given
planar layout was to increase its thickness. Sputtering and vapor
depositing was not suitable to obtain layers thicker than a few
100 nm because of mechanical stress and high costs. Electro-
plating of gold was assumed to be a much more suitable to get
tracks of a few µm thickness. Electrode impedance, in general,
is determined by effective electrode area and properties of
electrode material. Holding on platinum as soft material that
stands bending of flexible polyimide substrate (in contrast to
iridium) and keeping the geometrical area predetermined by
electrode design, the effective area had to be increased to
reduce the impedance. A large effective area could be gained
by platinum black deposition. Platinum black is platinum with
a very high micro-roughness inhibiting reflection of visual light
causing a characteristic black appearance.
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1) Gold Electroplating: One requirement for the electro-
plating process was to fit into the established processing
procedure for polyimide micro-structures, e.g. no additional
photolithographic mask should be needed. The new process for
fabrication of polyimide-structures, including electroplating of
tracks, is illustrated in Fig. 1.

a) e)

b) f)

c) g)

d) h)
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Fig. 1. Processing of polyimide thin-film substrate with electroplated gold
interconnection lines. a) Spinning polyimide resin on silicon wafer, curing,

deposition of Ti/Au starting layer. b) Patterning photoresist and c) gold
electroplating of interconnection lines. d) Removing resist and wet-etching of
starting layer. e) Deposition of electrode material and f) spinning on polyimide

resin, curing, deposition and patterning of aluminum etching mask. g) Dry-
etching of electrode and pad openings, removing etching mask by wet-etching.

h) Release of substrates from silicon wafer.

First, a 5 µm layer of polyimide resin (Pyralin 2611, HD-
Microsystems, Bad Homburg, Germany) was spun on a silicon
wafer and imidized. 50 nm Ti/Au was sputtered (reactor:
L400 SP, Leybold, Dresden, Germany) onto it as a starting
layer for electroplating (Fig. 1, a). 5 µm of photoresist
ma-N 440 (Micro Resist Technology, Berlin, Germany) was
patterned to protect specific parts from electroplating
(Fig. 1, b). The starting layer was electrically contacted and the
whole wafer was put upside-down into a gold-sulfite bath
(Imabrite 24, Schloetter, Stuttgart, Germany), heated to 40 °C.
An electrical current was applied to the starting layer and
a platinum counter electrode in order to deposit gold from the
electrolyte (Fig. 1, c). The amperage was calculated by total
surface area of all interconnection lines to be thickened on the

wafer multiplied by a current density of 30 A/m². The thickness
of the electroplated gold layer was predetermined by processing
time. After electroplating, the photoresist was removed and the
starting layer was wet-etched (Fig. 1, d). The following steps
remain unchanged to former polyimide microprocessing:
sputtered electrode metal (200 nm Pt) was patterned on the
electroplated gold by a lift-off process (Fig. 1, e), a second
polyimide layer (5 µm) was spun on and imidized. A 200 nm
aluminum etching mask was patterned onto it (Fig. 1, f). Using
oxygen-based reactive ion etching (reactor: STS 320 PC,
Surface Technology Systems, Newport, UK), pad and electrode
sites were opened, structure separation were etched down to the
silicon wafer (Fig. 1, g). As a final step, the structures were
released from the wafer (Fig. 1, h). The electrical resistance of
electroplated tracks were measured by four-wire ohms
measurement using a probe needle station (PM5, Karl Suss,
Dresden, Germany) and a precision multimeter (HP 3458 A,
Hewlett Packard, Palo Alto, CA). Thickness of the electro-
plated structures were measured with an optical surface profiler
(RM 600-S, Rodenstock, Munich, Germany), structure quality
was visualized by scanning electron microscopy (SEM).

2) Deposition of Platinum Black: An electrolyte was mixed
as follows: 5 g H2PtCl6 was dissolved in 357 ml ultra pure
water. Subsequently, 71.4 mg Pb(NO3)2 were added (Merck
KGaA, Darmstadt, Germany). Voltage-controlled electroplating
was carried out, using a platinum counter electrode and an
Ag/AgCl reference electrode, connected to custom-made
potentiostat. A DC signal was applied between counter
electrode (anode) and starting layer of electrode structure
(cathode) for a specific time period. During the deposition
process, ultra sound was applied to the electrolyte in order to
immediately remove bad adhesive platinum black particles
from the electrode structure.

Electrode surfaces were characterized by three electrode
impedance spectroscopy (0.9% saline solution at room
temperature) using a commercially available setup (model 1260
impedance/gain-phase analyzer and 1287 electrochemical
interface, Solartron, Farnborough, England). Surfaces were
inspected by SEM and optical microscopy.

B. Enhancement of Mechanical Properties

Jo et al. reported a method for bonding two parts of PDMS
elastomers by simply pressing two plasma-activated surfaces
together [6]. We applied this method for joining silicone to
silicone and also polyimide to silicone in order to assemble
fixed diameter cuff electrodes as well as spiral cuff electrodes.

1) Spiral Cuff Electrodes: Two sheets of medical grade
silicone (4 cm x 8 cm, 127 µm thickness, Speciality Silicone
Fabricators, Paso Robles, California) were treated by oxygen
plasma, generated in a sputter reactor (L400 SP). Subsequently,
one sheet was mounted in a stretching tool and stretched. The
second sheet was laid onto it - activated surfaces faced each
other - and slightly pressed on. After a specified period of time,
the tool was opened and the two layer silicon sheet was taken
out, and curled by itself to a spiral. This spiral cuff was fixed



with tape in opened position and treated again with plasma,
together with a polyimide thin-film structure. Subsequently, the
cuff was allowed to curl while the thin-film structure was
slightly pressed to the inner side of its wall.

2) Fixed Diameter Cuff with Piano-Hinge Closure: A sheet
of silicone and a polyimide thin-film structure was plasma-
treated. Subsequently, the thin-film structure was slightly
pressed to the silicone sheet in planar position. A piano-hinge
closure [7] was made by gluing (MED-1000, NuSil, Carpin-
teria, CA) eight pieces of medical grade silicone tubing (1 mm
length, Øouter=0.7 mm, Øinner=0.5 mm, HM Medical Engineer-
ing, Binzen, Germany) to the edges of the silicone sheet.

To estimate the maximum processing time, activated
surfaces were put together 10, 30 and 60 minutes after plasma
treatment. In case of silicone-silicone junctions, the quality of
bonding was estimated 20 hours after plasma-treatment by trials
of manual separation of two bonded sheets. Also after 20 hours,
polyimide-silicone adhesion was measured by 180° peel tests,
using a modified bond tester (PC 2400 tester with DS100KG
sensor unit, Dage Precision Industries, Aylesbury, England)
that was actually intended to characterize wire bonds of
electronic assemblies.

III. RESULTS

Presentation of results was divided into electrical characteri-
zation (subchapter A) and description of mechanical improve-
ments (subchapter B).

A: Reduction of Electrical Losses

Electroplating of gold for a duration of 18 min, 42 sec at
30A/m² resulted in interconnection lines with a thickness of
3 µm. Mean track resistance was reduced from 480 Ω to 10 Ω,
varied by track length and width. Figure 2 shows a SEM of
a representative test structure.

electroplated gold

starting layer

Fig. 2: SEM of a 20 µm wide and 3 µm high test structure
on Ti/Au starting layer, made by electroplating of gold.

Well adherent, uniform layers of platinum black were
achieved by application of 0.5 V for a duration of 30 sec.
A comparison of four investigated combinations of materials

and depositing processes (Fig. 3) led to the following ranking,
referring to impedance measured at 1 kHz, 100 mV sine
excitation at room temperature, using 0.9% saline solution as
electrolyte:  best results were obtained by platinum black
electrodes on electroplated tracks (624 Ω / -1.9 °), followed by
platinum black on thin-film tracks (1002 Ω / -2.0 °). Electro-
chemical properties of sputtered platinum on electroplated
tracks (3302 Ω / -58.8 °) were found to be better than that of
sputtered platinum on thin-film tracks (7784 Ω / -60.6 °), which
was the candidate with the highest impedance.
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Fig. 3: Spectra of impedance magnitudes of dot-shaped electrodes
(Ø=500 µm, connected to integrated interconnection lines), made of different

material combinations: sputtered platinum on sputtered tracks (square),
sputtered platinum on electroplated tracks (dot), platinum black on sputtered

tracks (diamond), and platinum black on electroplated tracks (triangle).
Measured in 0.9% NaCl solution, 100 mV sine excitation at room temperature.

B. Enhancement of Mechanical Properties

Successful silicone to silicone bonding proved to be
uncritical in respect to plasma parameter variation. Bonding of
polyimide to silicone was more delicate. A set of parameters
was found, that enabled bonding of both material combinations:
an oxygen-plasma (75 % O2 at 10-7 bar), generated for 10 sec
with a RF-power of 200 W at 13.56 MHz. Neither silicone-
silicone nor polyimide-silicone junctions were reversible,
independent from time of contact (10, 30, 60 minutes after
plasma treatment). Peeling trials led to destruction of silicone,
the adhesion was better than the cohesion of silicone. Applying
that bonding technology, the wall-thickness of a Hybrid Cuff
Electrode was determined only by the thickness of used the
silicone sheets and additional 10 µm of the polyimide-inlay.
A fixed diameter cuff electrode was assembled, consisting of
a 127 µm thick silicone sheet (cuff) and a polyimide-micro-
structure with 18 stimulation sites. A piano-hinge like closure
was realized as shown in Fig. 4. Because of the thin silicone
wall, this cuff electrode was extremely flexible and soft.
A spiral cuff electrode was manufactured by bonding a sheet of
silicone to another one that was stretched. This resulted in
a silicone spiral with a wall thickness of 254 µm. To the inside
of this spiral, a polyimide structure was bonded (Fig. 4).



IV. DISCUSSION

Electroplating of 3 µm gold reduced track resistance by
a factor of about 48, compared to 300 nm thin-film, which did
not correlate to the factor 10 of track thickening. Possible
reasons for that could be the well-known differences between
bulk-material and thin-film properties of metals and different
ratios of deposited gold and titanium layer heights. Titan, which
was used as adhesive layer between polyimide and gold, might
be diffused into the gold tracks, formed an alloy and modified
electrical properties. This effect was assumed to be negligible
in electroplated tracks but not in thin-films.

Differences of impedance spectra between electrodes on
thin-film and electroplated tracks could not be explained only
by different track resistance but by a much rougher surface of
electroplated tracks that also led to a rougher surface of the
stimulation site (larger effective electrode area caused smaller
impedance).

5 mm polyimide

silicone

Fig. 4: Hybrid Cuff Electrodes, fitting to 4 mm diameter peripheral nerves,
assembled by plasma-activated bonding. Left: fixed-diameter cuff with piano-

hinge closure, locked by a piece of suture (2.5 metric). Right: spiral cuff.

The initial trials of bonding silicone to silicone and
polyimide to silicone using oxygen plasma activation were very
encouraging (and might be interesting for a couple of different
applications). Wall-thickness of silicone cuffs were only
predetermined by thickness of used polyimide and silicone
sheets, which are in general not restricted to the sheets of
127 µm thickness that were used here. Not using silicone
adhesives increased yield in electrode assembly because
stimulation sites could not get covered accidentally by glue.
Possible processing time of at least one hour after plasma
activation gave a lot of space for assembling, in contrast to
silicone glue that had to be processed within a few minutes. The
time of completion of bonding remains to be explored. In this
study, bonding was allowed to last 20 hours but it might be
finished much earlier.

To ensure safety for chronic implantation of the improved
Hybrid Cuff Electrode, biocompatibility of the new processing
steps has to be proved, e.g. by cytotoxicity testing; in vitro tests
have to be carried out investigating long-term reliability of
electrical and mechanical properties.

V. CONCLUSION

Impedance of multichannel Hybrid Cuff Electrodes - and as a
consequence: electrical loss during stimulation - was lowered by
up to two decades (lower frequency spectrum) by electroplating
of gold tracks and platinum black electrodes. Now, even CMOS-
based stimulators can drive reasonable currents through this
device. A new technology was established for bonding silicone
and polyimide thin-film based on plasma activation. Adhesion
between two bonded bodies was found to be stronger than the
cohesion of silicone. Applying this new bonding method,
extremely flexible cuff electrodes were manufactured. However,
biocompatibility of the new process steps and long-term
reliability of electrical and mechanical properties remain to be
demonstrated until patients may gain from these improvements.
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